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ABSTRACT 

The response of a one-dimensional e lectron plasma confined 

by per fec t ly  r e f l ec t ing  boundaries has been calculated riumerically 

f o r  several  externally-maintained e l e c t r i c  f i e l d  configurations 

representing d i f fe ren t  physical s i tuat ions.  The electron d i s t r ibu t ion  

function i s  expanded i n  a Fourier-Hermite ser ies .  The external  f i e l d s  

(of various wavenumbers and frequencies) are represented by equivalent 

charge density terms i n  Poisson's equation. 

In  t h e  f i rs t  s i tua t ion  t h e  external  f i e l d  i s  a standing wave 

o s c i l l a t i n g  at approximately the  resonant frequency fo r  t h e  given wave- 

number k . 
of the  p a r t i c l e  e l e c t r i c  f i e l d  a r e  found t o  o s c i l l a t e  slowly with a 

period corresponding t o  the  period of o s c i l l a t i o n  of p a r t i c l e s  trapped 

i n  t h e  po ten t i a l  trough of the driving wave. Analogous s p a t i a l  o sc i l -  

l a t i o n s  have been reported by Malmberg and Wharton. 

system represented i n  these calculations i s  similar t o  t h e  experiment 

of  Decker and Hirshf ie ld  i n  which a se r i e s  of disks with a l te rna t ing  

po ten t i a l  i s  s e t  up perpendicular t o  the  axis of a plasma column. 

The energy of t h e  p a r t i c l e  d i s t r ibu t ion  and t h e  envelope 
0 

The physical 

In  t h e  second s i tua t ion  t h e  external  source charge density 

i s  held constant and represents a small sinusoidal inhomogeneity i n  

t h e  ion background. The appropriate Bernstein, Greene, and Kruskal 
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equilibrium i o  calculated and found numerically t o  be s tab le  against  

s m a l l  perturbations.  Landau damping r a t e s  f o r  perturbations from 

these inhomogeneous equi l ibr ia  are compared with t h e  values calculated 

by Jackson and Raether. 

In  another calculation t h e  inhomogeneity i n  the  background 

charge density i s  var ied slowly compared with t h e  electron plasma 

frequency t o  simulate t h e  f i e l d  seen by electrons i n  the  presence of 

an ion  acoustic wave. This i s  done t o  t e s t  t h e  conmon assumption t h a t  

i n  t h e  presence of an ion wave t h e  mobile e lectrons respond i n  such a 

way as t o  obey a loca l ly  isothermal equation of s t a t e .  

calculated t h e  electrons do obey an isothermal equation of state t o  

within a few percent. 

I n  t h e  cases 

I n  the  fourth s i tua t ion  t h e  ion inhomogeneity i s  switched on 

suddenly with t h e  electrons i n i t i a l l y  i n  a uniform equilibrium. The 

electrons r ed i s t r ibu te  themselves t o  screen out t he  ion f i e l d  and, i f  

t he  inhomogeneity i s  not  too  large,  they approach an inhomogeneous 

equilibrium by Landau damping. 
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1 INTRODUCTION 

W e  report. here t h e  r e s u l t s  of nunierical calzula1,ions of t h e  

response of a co l l i s ion le s s  electron plasma t o  an extt.l.ilally-inl77c:;,_.~l 

e l e c t r i c  f i e l d  which depends 011 space and time. 

ca lcu la t ions  by the  same techniques''" '' have been concerned wiLh 

t h e  i n i t i a l  value problem fo r  the sane syst.em. Iiiclusio1i of the 

external  f i e l d  allows stat,ements t o  be made about t he  behavior. of a 

Vlasov plasma i n  s i t ua t ions  where t h e  length and time sca les  of t h e  

Frevious nunieri ca-1 

-- 

phenomena bear no d i r e c t  re la t ion  t,o the e lec t ron  Debyc length aid 

electron plasma frequency; such s i tua t ions  of ten  occur i n  prac Lice. 

The equations t o  be inves t iga ted  axe a. general izat ion of' 

t h e  dimensionless equations t r ea t ed  by Armstrong: '' 

where t h e  e lec t ron  Debye length i s  t h e  f'undamental un i t  of length 

and t h e  reciprocal  of the  electron plasma frequency i s  the  u n i t  of 
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time. f = f (x ,  v, t )  i s  t h e  e lectron disti*ibutioii ,  E = E(x, t) i s  

the  e l e c t r i c  f i e l d ,  and (x. t )  i s  a n  external. "source" charge 

densi ty  which i s  regarded as a civen fhnction of x and t a.nd whi.ch 

Pext . 

i s  regarded as generating tht: "external" p a r t  o f  the  t ,otal  e l e c t r i c  

might represent t h e  chart:? d m s i  t.y 
+ Pext. f i e l d .  For example, 

of t hc  pos i t i ve  ions of a plasma; 

quas i -e lec t ros ta t ic  external  cLi.sk s t ruc ture  i i i  the expcrirtient of 

Decker and H i r ~ h f i e l d . ~  The spe-ific- choice of t,he furictionacl forit] 

might, stand f o r  t h e  
Or Pext. 

i s  d ic ta ted  by the problem one i s  attempting t o  simulate. 

Calculations were done fo r  four sepa.rat,e problems. After 

a b r i e f  summary of the  method of computation i n  Section 2. we t r e a t  

i n  Section 3 the  response of an electzon pl.asma t o  an  ext,errial f i e l d  

which var ies  on the time scale  of t h e  elcctron plasma frequency. 

Section 4 describes the  construction of  inliomogeiit3ous equilibria, 

and the  study of Laxdau darnping of pertui*bat,i.oiis on thest. equi l ibr ia .  

Section 5 concerns the  response of a p_l.asma to a p 

slowlx coinpared t o  the electron plasma frequency (w a < a b ) ,  with 

most of t he  a t t en t ion  directed t o  the  degree t o  which the  electron 

which va r i e s  ext . 
0 

plasma obeys a l o c a l l y  isothermal. equation of  state i n  the  presence 

of such a slowly varying external po ten t i a l .  Section 6 t r e a t s  t h e  

time dependence of t h e  shielding cloud which forms around an 

i n  s t a,n t a,n eou s l y  i n  t r o duc e d " t e s t char g e 'I di s t r i bu t i on. 
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2. COMmJTATIONAL METHOD 

W e  s h a l l  choose i n i t i a l  conditions and func-t,ional. forms 

f o r  which t h e  plasma may be a l te rna t ive ly  regarded as s p a t i a l l y  

per iodic  o r  as obeying perfect ly-ref lect int :  boundary conctitions at, 

x = 0 and x = L. If we start  with the  electron ciistribubion 

f (x ,  v, 0) = f ( -x ,  -v, 0 )  and  external  charge p (x. t )  = ( - x , t ) .  ext  . pext . 
with Pext,, 

i s  r ead i ly  shown t h a t  f(0, v, t )  = f (0 ,  -v, t )  and f (L,  v, t )  = 

f ( L ,  -v, t )  f o r  a l l  t > 0; t h e  plasma i s  therefore  speculasly r e f l e c t e d  

a t  x = 0 and x = L. It a l so  follows t h a t  E(@. t )  = E(L, t.) = 0 for 

all t. 

and f(x,  v, 0 )  being per iodic  with per iod 2L i n  x, then it 

The quant i t ies  f ,  E,  and peXt, a r e  a l l  erpanded i n  complex 

Fourier s e r i e s ,  

Q, ink x 
0 E(x, t )  = C En( t ) e  ? 

n=-m 

03 inlr s 
0 (x, t )  -1 c p,(t)e 

11=- a3 Pext . 
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where k = n/L. The symmetry conditions imply f ( -v ,  t )  = f (v, b ) ,  
0 n -n 

E n ( t )  = - E - n ( t ) ,  and p n ( t )  = p _ , ( t ) ,  so we need compute only f o r  

n =I 0. 

The f a re  f h r t n e r  expanded i n  the  Gram-Charlier s e r i e s  i n  n 

ve loc i ty  used previously1’ ’ 

where 

i s  the  orthonormal Hermite polynoniial of degree in. I n  t h i s  represen- 

t a t i o n  a Maxwellian ve loc i ty  d is t r ibu t ion  requires  only the  in = 0 

term of t he  ser ies .  

Poisson’s Equation (2)  beconies 

ink 
0 

and substi tu.t ion i n t o  t he  transformed version of Equation (1) gives 
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= 0. The symmetry re l a t ions  determine t h a t  -1,n w i t h  Z 

-E z ( t )  = z (t) = (-l)m zm(t) .  
m, -n m, n 

The elements of t h e  Zml m a t r i x  are advanced s tep  by s t ep  i n  time 

according t o  Equation ( 6 ) ,  using G i l l ' s "  special izat ion of the  

Runge-Kutta method. 

I n i t i a l  dis t r ibut ions a re  usual ly  chosen t o  be Maxwe1lia.n 

i n  ve loc i ty  so t h e  only non-zero coef f ic ien ts  a r e  Z 

guarantees, however, t h a t  elements with increasing m will soon be 

non-zero. 

the  f i rs t  term on t h e  right hand s ide  of Equation (6)). 

Equation (6) on 

( In  prac t ice  t h i s  i s  due mainly t o  the  streaming term - 

A s  t h e  increases it i s  necessary t o  ca lcu la te  more and 

more terms i n  the  Hermite ser ies  i n  order adequately t o  represent 
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t h e  velocity-space wrinkles i n  f .  Sypically, severa l  hundred terms 

i n  the  se r i e s  a r e  needed, as discussed previously by Armstrong.l'" 

I n  the  Fourier expansion, disturbances spread t o  increasing n only 

slowly, and fo r  the  problems considered here  the  n = 0, 1, and 2 

values of the Zm a r e  suf f ic ien t .  
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3. RESPONSE TO A FUWIDLY VARYING FIELD; 
EFFECTS OF "TWPED" PARTICLES 

For t h i s  case it was desired t o  choose p ext  . 
t h e  charge density on a periodic axray of gr ids ,  

t o  represent, 

and thus t o  simulate t h e  experiment of Decker and H i r ~ h f i e l d . ~  

l a rge  number of Fourier harmonics required t o  represent accurately 

the  d e l t a  functions 

computer time, so the  somewhat l e s s  r e a l i s t i c  but  computationally 

more convenient choice of a simple s ine  wave w a s  made: 

The 

l e d  t o  prohibi t ively l a rge  requirements of 

(x, t )  = 2 4  s i n  w t cos k x , Pext 0 0 (7) 

with pl = const. 

s e r i e s  expansion of t h e  d e l t a  functions f o r  t h e  gr ids .  

d i s t r ibu t ion  i s  taken t o  be a uniform Maxwellian. 

This i s  j u s t  the  leading term i n  the  Fourier 

The i n i t i a l  

Equations (1) and (2 )  can be l i nea r i zed  i n  p and ext . 
solved analyt ical ly .  

methods ( i n  addition t o  those previously discussed by Armstrongl, "), 

A s  a check on t h e  accuracy of t he  numerical 
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Equation (6) was also l inear ized  and integrated numerically f o r  

comparison with the  long-time limit of t h e  ana ly t ica l  r e s u l t .  

the  pa r t i cu la r  case of p 

two r e s u l t s  f o r  El agreed t o  within 0.01% a f t e r  t h e  t r ans i en t  p a r t  

For 

= 0.0458, ko = 0.916, and w0 = 1.923, the  1 

of the  solut ion had Landau-damped a w a y  ( t  Z 10 

We a re  more in te res ted  i n  the non-linear e f f ec t s  on t h e  

response t o  the  external  f i e ld .  

i n  par t icu lar ,  can be seen much more eas i ly  i n  t h e  context of t h e  

driven problem than i n  the  pure i n i t i a l  value problem: phenomena 

associated with the  osc i l la t ions  of p a r t i c l e s  "trapped" i n  the  

po ten t i a l  wells of t he  driving f i e l d s .  

One c l a s s  of non-linear phenomena, 

The po ten t i a l  generated by Equation (7) can be decomposed 

i n t o  r igh t  and l e f t  t rave l ing  waves with phase ve loc i t i e s  f w /ko. 

A p a r t i c l e  moving at approximately t h e  phase ve loc i ty  of one of 

t h e  waves sees t h a t  wave as essent ia l ly  a time-independent, constant- 

p r o f i l e  po ten t i a l  well. (The e f f ec t  of t h e  non-resonant wave camcels 

out  when viewed on the  time-scale of t he  in te rac t ion  of t he  p a r t i c l e  

with the  resonant wave.) 

enough it can be considered t o  be trapped i n  the  po ten t i a l  trough of 

t h e  wave. 

0 

I f  the p a r t i c l e ' s  - t o t a l  energy i s  small 

The period of an electron trapped at t h e  bottom of the  
1 

trough of a wave of amplitude El and wavenumber k i s  T = ~ T T ( ~ ~ E ~ ) - ~ .  
0 
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The per iod i s  longer fo r  electrons of greater  t o t a l  energy, and 

approaches i n f i n i t y  for  pa r t i c l e s  a t  the  boundary of t he  trapping 

region. 

o s c i l l a t i o n  period, we expect t o  see slow osc i l l a t ions  i n  t h e  gross 

propert ies  of t h e  plasma such as t o t a l  k ine t i c  energy and electro-  

s t a t i c  f i e l d  energy. 

If t h e  wave p e r s i s t s  f o r  times longer than t h e  typ ica l  

Figure 1 shows,for a pa r t i cu la r  case. the absolute value 

of t h e  Fourier components of the  p m t i c l e  e l e c t r i c  f i e l d  - t h e  t o t a l  

e l e c t r i c  f i e l d  l e s s  the  external f i e l d .  

ind ica te  components of wavenumber k and 2ko, respectively.  The 

curve labe l led  P.E. (pa r t i c l e  energy) shows the  percent change i n  

the total. k ine t i c  energy of the pa r t i c l e s .  In  the  Fourier-Hermite 

representation of t h e  dis t r ibut ion,  t he  t o t d  k ine t i c  energy i n  

0 5 x 5 L i s  given by ( 2 ~ r ) ~ ( Z ~ ~  + ,,/2 Z20)(~/2ko). 

t h a t  t he  p a r t i c l e  k ine t i c  energy undergoes a slow o s c i l l a t i o n  with 

a period of about 32.5 

per iod of p a r t i c l e s  with a veloci ty  (as measured i n  the  frame of t h e  

resonant wave) of about 0.3 vthemal, or  about ha l f  t h e  width of 

t h e  trapping region. (These are the  p a r t i c l e s  t h a t  occupy the  region 

of grea tes t  d i s tor t ion  of t h e  d is t r ibu t ion  f’unction, as can be seen 

i n  Figure 2.) 

The subscr ipts  1 and 2 

0 

1 
The f igu re  shows 

. This value corresponds t o  the  o r b i t a l  W p - l  



The envelope of t h e  El curve shows t h e  same slow period 

superimposed on the  osc i l la t ions  of frequency w . 
t h e  k ine t i c  energy has almost returned t o  i t s  i n i t i a l  value, El 

undergoes a quick low-amplitude osc i l l a t ion  reminiscent of t he  phase 

adjustment it experienced when the  external  f i e l d  w a s  switched on. 

The broad dip of t h e  El envelope over t he  time of maximum p a r t i c l e  

k ine t i c  energy may be due t o  a detuning of t h e  plasma from the  

driving frequency wo because of the  d i s to r t ion  of t he  d is t r ibu t ion  

fhnction. (wo w a s  chosen t o  approximately satisf‘y the  dispersion 

r e l a t ion  fo r  t he  i n i t i a l  Maxwe1lia.n and k 

A t  t 2 32, when 
0 

= 0.916). 
0 

Figure 2 shows the  spa t i a l ly  uniform p a r t  of the  d i s t r ibu t ion  

f’unction f 

cycle. 

shows t h e  m a x i m u m  d i s to r t ion  o f  the  d i s t r ibu t ion  from the i n i t i a l  

Maxwellian, while t h e  t = 20 curve shows the decreasing d i s to r t ion  as 

t h e  trapped p a r t i c l e s  continue around t h e i r  o r b i t s  i n  phase space. 

fo r  ve loc i t ies  near w /k a t  th ree  times i l l  t h e  enerFN 
0 0 0  

The curve fo r  t = 17 (time of maximum p a r t i c l e  k ine t i c  energy) 

The trapped p a r t i c l e  phenomena are eas ie r  t o  observe i n  t he  

driven case, where the wave amplitude i s  maintained, than i n  the  

i n i t i a l  value problem where the wave amplitude i s  decqfing by Landau 

dmping. 

p a r t i c l e s  before they can complete an appreciable f rac t ion  of even one 

o s c i l l a t i o n  i n  the  wave trough. This apparently happens i n  all cases 

The decaying amplitude m a y  f r e e  most of t he  i n i t i a l l y  trapped 
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shown i n  Reference 2 except f o r  Figures 2d and 5a, where the  f i r s t  

ha l f  cycle appears t o  have been reached by t 2 15. 

It i s  t o  be emphasized tha t  the d i s to r t ion  of t he  ve loc i ty  

d is t r ibu t ion  function near v Y f (O /k 

nature  than t h e  development of t h e  quasi-l inear "plateau". In  the  

quasi-l inear theory6' '' 8 ' 9  t h e  presence o f  a continuum of phase 

ve loc i t i e s  provides f o r  a monotonic approach t o  a f l a t  ve loc i ty  

d is t r ibu t ion  near the phase velocity of t he  excited waves; whereas 

i n  the  case of one driven wave, t he  d is t r ibu t ion  f i r s t  f l a t t e n s ,  

then develops a hmp,  then f l a t t ens  again, and f i n a l l y  re turns  

approximately t o  i t s  o r ig ina l  form. 

Because there  i s  a spread i n  t h e  o r b i t  times fo r  p a r t i c l e s  

i s  of a qua l i t a t ive ly  d i f fe ren t  
0 0  

- 

i n  t he  trapping region, t he  phenomenon i s  not e n t i r e l y  reversible.  

This accounts fo r  t he  f a c t  t h a t  the quant i t ies  i n  Figure 1 do riot 

re turn  exactly t o  t h e i r  i n i t i a l  values a f t e r  t h e  t rapped-part ic le  

o sc i l l a t ion  period. The osc i l la t ion  i n  t h e  envelope of 

example, i s  presumably subject t o  a slow damping with an e-folding 

time which i s  long compared with t h e  times of any ex is t ing  computation. 

I El I . fo r  

S i m i l a r  considerations have been discussed a n d y t i c a l l y  by 

Al ' t shul  and Karpmanl0and O'Neill' for t he  i n i t i a l  value problem. 

The e f f ec t  has been observed experimentally by Malmberg and Whartonl" 

fo r  t h e  driven boundary-value problem. 



I n  t i m e  we expect the p a r t i c l e s  t o  f i n d  themselves evenly 

d is t r ibu ted  around t h e i r  o rb i t s  and the  d i s t r ibu t ion  function t o  have 

t h e  f a m i l i a r  plateau shape i n  the  v i c i n i t y  of t he  phase ve loc i ty  of 

the  driving wave. 

very long compared t o  t h e  time of any exis t ing  computations. 

However, the time f o r  t h i s  t o  occur i s  apparently 
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4. LANDAU DAMPING OF PER!XREiATIONS 
ON INHOMOGENEOUS EQUILIBRIA 

Qui te  some time ago, Bernstein, Greene, and Kruskall3 and 

H a r r i s 1 4  showed how t o  analyt ical ly  construct t ime-independent solu- 

t i ons  t o  Equations (1) and (2) which involve inhomogeiieous e l e c t r i c  

f i e l d s  E(x) z - dcP(x)/dx. 

which leads t o  a self-consistent solut ion for  Poisson's equation i s  

such an equilibrium. 

ai inhomogeneous equilibrium as the  f i n a l  s t a t e  of t he  c l a s s  of 

i n i t i a l l y  unstable e lectron plasmas they considered. 

of previous ana ly t ic  calculations of inhomogeneous equ i l ib r i a  which 

wo1il.d remain numerically stable on t h e  computer. In  t h i s  sect ion we 

describe t h e  construction of such equ i l ib r i a  and t h e  s t i t d y  of t h e  

damping of perturbations about thsse equi l ibr ia .  AnaJytical s tudies  

of increasing degrees of sophistication have been car r ied  out by 

Montgomeryls, Low16, Pearlsteinl7,  Friedbergl*, and Knorr 19. 

2 Any in tegrable  d i s t r ibu t ion  f = f(& v - 'p) 

Armstrong and Montgomery-? appear t o  have found 

We do riot know 

For we take a sinusoidal but  time-independent value 
Pext . 

= 6 COS k x Pext . 0 



The inhomogeneity i s  measuredby = const., and the  d i s t r ibu t ion  

w i l l  be 

We consider solutions fo r  CP which can be wri t ten as a 

rapidly converging Fourier series,  

cp(x) = A1 COS k x  + A CGS 2k x + A COS 3k x + ... ' (9) 0 2 0 3 0 

2 t h a t  t h e  exponential s e r i e s  exp u, 

converges rapidly. 

= 1 + ~p + cp /2! + ... a l s o  

Subst i tut ing (8) and ( 9 )  i n t o  (2) and re ta in ing  terms 

through O ( €  3 ) gives, upon equating t o t a l  e lectron a i d  ion chaxge, 

1 
2 a =  7 

1 + A1 /lc 

2 -a A1 /4 
- - 

2 '  
A2 a + 4ko 

( - a % ) ( A : + l ? )  

a + 9ko 
A3 =24 
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It i s  most convenient t o  choose A 

t h e  quant i t ies  using re la t ions  (10). 

coef f ic ien ts  Z a r e  eas i ly  calculated, s ince the  ve loc i ty  d is t r ibu t ion  

i s  j u s t  Maxwellian. 

and ko and ca lcu la te  t he  r e s t  of 

From these t h e  equilibrium 

1 

mn 

Coefficients with m # 0 vanish ident ica l ly .  

The computed Z are  then used as i n i t i a l  conditions t o  on 
see how well  they represent a time-independent solut ion of Equation 

(6). 

t h ree  s ipp i f ieant  f igures  w i t h  o sc i l l a t ions  of only+]- 

f igure.  ("he I.B.M. 7044 on which these computations were done does 

For A1 = 0.1 and %l 0.5, t he  Zm matrix w a s  s ta t ionary  through 

i n  the  fourth 

8-d ig i t  ari thmetic.)  

i n  the  i n i t i a l  matrix elements improved t h e  degree t o  which t h e  

We found t h a t  adjustments of l e s s  than 0.05% 

solut ion w a s  s ta t ionary  t o  the  extent of moving t h e  osc i l l a t ions  out 

t o  the  s ix th  or  seventh s igni f icant  f igure.  

t o  get as near as possible  t o  a s ta t ionary  so lu t ion  so t h a t  small 

This lltuning" i s  desirable  

perturbations from the  solution can be studied f o r  longer times. For 

ko= 0.75 t h e  calculated equilibrium was off by about one per  cent, but 

w a s  ea s i ly  corrected with a few trials. 

and Zo2 i s  establ ished 
00' zol, Once an equilibrium se t  of Z 

f o r  a given k inhomogeneous Landau-damping f o r  t h a t  wavenumber i s  

measured by using an i n i t i a l  value of  Z 

(equilibrium), and watching the corresponding e l e c t r i c  f i e l d  per tur-  

0' 

(perturbed) 1.05 Z 01 01 

bation, El pert , damp f o r  several  cycles. A sample measurement for  



t h e  case of ko = 0.5 and A1 = 0.1 i s  shown i n  Figure 3. The slopes 

of t h e  two s t r a igh t  l i n e s  represent reasonable e r ror  limits f o r  t h i s  

measurement of t he  damping decrement Y. The unper-turbed equilibrium 

value of Zo2 w a s  used f o r  t h i s  run but a per turbat ion e l e c t r i c  f i e l d  

of wavenumber 2k w a s  soon generated nonlinemly. This per turbat ion 
0 

f i e l d ,  E2 pert , stayed at l e a s t  a f ac to r  of 20 smaller than El pert 

so t h e  damping can be considered t o  be e s sen t i a l ly  l inear .  

Damping decrements measured i n  t h i s  w a ~ r  f o r  A1 = 0.1 and 

f o r  several. values of k 

uncerts i i i t ies  i n  t h e  values when uncer ta in t ies  a r e  l a rge r  than the 

a r e  shown i n  Figure 4. Error bars indica te  
0 

p lo t t ed  points.  Solid c i r c l e s  represent cases where t h e  per turbat ion 

had t h e  same wavenumber as the inhom0geneity;open c i r c l e s  represent 

cases where the  perturbation wavenumber w a s  twice the  inhomogeneity 

wavenumber. 

Zol were used but  Z 

value. 

measured damping r a t e s  f e l l  within t h e  e r ror  l imits of r a t e s  measured 

f o r  ko = 0.50 and 0.75 and are  not  shown i n  Figure 4. 

shows y(ko) calculated2O for  l inear  Landau damping about homogeneous 

In  t h e  l a t t e r  cases t h e  equilibrium values of Zoo a i d  

w a s  started 10% l a rge r  than i t s  equilibrium 
02 

For perturbations of wavenumber 2k = 0.50 and 0.75 t h e  
0 

The s o l i d  curve 

equ i l ib r i a  (A1 = A2 = A = 0). 3 
A s  ko decreases t h e  measured values of V(ko) l i e  f a r the r  

above t h e  homogeneous damping curve. The small ko l i m i t  i s  t h e  domain 
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of app l i cab i l i t y  of t he  inhoniogeneous Landau damping calculat ions 0:’ 

Jackson and Raether21. Their calculat ions indicated t h a t  for srnall IT 

Landau damping i s  grea t ly  increased by even s m a l l  background inhomo- 

g enei t i e s . 

0 

The curve i n  Figure 5 shows t h e  increase i n  the  damping 

(= ~ / 2  i n  decrement Y with increasing background inhomogeneity 

Jackson and Raetherzl)  where the eigenf’unction of the e l e c t r i c  f i e l d  

i s  assumed t o  be the  Mathieu function se2(kox, q) with q = 4p1/(3koL). 

The condition f o r  se2 t o  be t h e  eigenfunction i s  t h a t  

a = ( w  - 1)/(3ko )W 4 or W = 1 + 12ko f o r  q 4 1.5. 

p 1  

‘3 

2 2 2 2 

The poin ts  i n  Figure 5 show damping r a t e s  obtained by 

least-squares f i t s  t o  data  similar t o  t h a t  presented i n  Figure 3. 

I n  the  present case damping i s  very much slower and the  per turbat ion 

f i e l d  i s  calculated f o r  as long as 4 5 W  . The e r ro r  bars  we drawn 

conservatively and represent t he  d i f f i c u l t y  i n  measuring vesy slow 

damping of s m a l l  perturbations. 

s a t i s f i e d  i n  these calculations- i s  found t o  be about 1.10 ins tead  

of 1.25. Nevertheless, t he  agreement i n  the  damping decrements i s  

s t r i k i n g  . 

-1 
P 

The condition f o r  se2 i s  not accurately 



21 

5. RESPONSE TO A SLOWLY VARYING FIELD (u, < < ulp); 
ISOTHERMAL BEHAVIOR OF AN ELECTRON PLASMA 

Many plasma phenomena involving ions are characterized by 

time scales  slow compared t o  the electron plasma frequency. This 

permits t h e  more mobile electrons t o  follow t h e  ion motion while 

remaining i n  a quasi-steady s t a t e  configuration. Ion acoustic waves 

and d r i f t  waves a re  well-known examples. In m a n y  si tuations22’”3 

it g rea t ly  s implif ies  t h e  mathematics t o  assume t h a t  t h e  electron 

gas obeys a loca l ly  isothermal equation of s t a t e .  In  our one- 

dimensional s i tua t ion ,  t h i s  means t h a t  t h e  r a t i o  P(x, t ) /&(x ,  t )  

i s  constant, where P i s  t h e  electron pressure computed from t h e  

d i s t r ibu t ion  f’unction and i s  the  l o c a l  e lectron mass density. In  

t h i s  sect ion we check t h e  constancy of t he  r a t i o  over pos i t ion  and 

4n 

time while we slowly vary the  background ion inhomogeneity. 

s i n  %t cos k x. The wavenumber - 
Pext - 2 P 1  0 

Again we use 

used f o r  these t e s t s  was ko = 0.75 which corresponds t o  e lectron 

osc i l l a t ions  of frequency w(k) = 1.73. The ion  frequency w a s  chosen 

much smaller: wo = 0.75. 

41.9 wp- l  (one-half of an ion cycle) fo r  two kinds of in i t ia l  conditions. 

In  one case t h e  ion  perturbation was s t a r t e d  at  i t s  maxinium value 

The integrat ions were car r ied  out fo r  

cc cos w0t)and t h e  electrons were i n  the inhomogeneous equilibrium ( Pext . 
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appropriate t o  k and p and i n  two other  cases t h e  ion per turbat ion 

w a s  s t a r t e d  from zero(  

uniform. 

Brownian - motion type of Fokker - Planck co l l i s ion  term previ.ously 

used by Lenard and Bernstein 24, G r a n t  and F e i S 5 ,  and Aimstront: and 

Montgomery3 : 

0 1 

CT s in  co t ) and  t h e  electrons were s p a t i a l l y  
p a t .  0 

To reduce computing time for  these t e s t s  we employed the  

In  t h e  Fourier-Hermite representation t h e  term i s  merely 

Since the  term - vc m Zm on the  right hand s ide of Equation (6).  

i s  proportional t o  m it has only  a small e f f ec t  on t h e  low order 

terms i n  t h e  Hermite expansion. Even f o r  t h e  s m a l l  "col l is ion f r e -  

quency" vc L- 0.002 t h a t  was used i n  these t e s t s  t h e  e f f ec t  on terms 

with l a rge r  m i s  su f f i c i en t  t o  smooth out t h e  short-wavelength 

velocity-space wrinkles i n  the d is t r ibu t ion  function and t o  l i m i t  

expansion of t he  matrix i n  the Hermite direction. For addi t ional  

discussion of t h e  co l l i s ion  term see references 3 and 25. 

The l e f t  hand panel of Figure 6 i l l u s t r a t e s  the  e f f ec t  of 

a cos t. The second Pext . 0 
t h e  co l l i s ion  term f o r  t h e  case with 

order departure f (2)(v, t )  of t h e  s p a t i a l l y  uniform p a r t  f (v, t )  
0 0 



of the  d i s t r ibu t ion  f'unction from i t s  i n i t i a l  Maxwellian f (v, t = 0) 

i s  shown fo r  t = one-quarter ion cycle. 

= 0.002 and the  other from = 0. The co l l i s ion  term eliminated 

the  velocity-space wrink.les and reduced the  departure from t he  

Maxwellian. The r igh t  hand panel shows f o  (*) calculated a f t e r  one- 

ha l f  ion cycle using vc = 0.002. 

Q 

One curve resu l ted  from 

vC vC 

Variations i n  the  r a t i o  P/ a r e  shown i n  Figure 7 f o r  th ree  4n 
cases. Panel ( a )  shows the r a t i o  as a f'unction of time at  x = 0 ( the  

worst" choice of x, from the  point of view of t he  constancy of P/,), 11 

and panel (b) shows t h e  r a t i o  as a function of x at the  time of 

maximum ion per turbat ion (again t h e  "worst" choice). The f igure  shows 

t h a t  the r a t i o  was preserved t o  about 2$ when the  t o t a l  per turbat ion 

was 2pl = 0.156 (Z 15&), and t o  about "$ when the  t o t a l  per turbat ion 

W ~ S  2pl = 0.312. 
-1 

" p '  Although the  calculations were car r ied  out f o r  only 41.9 

we f e e l  t h a t  these r e s u l t s  furnish good support f o r  t he  assumption t h a t  

e lectrons obey a l o c a l l y  isothermal equation of s t a t e  i n  the  presence 

of a slowly varying ion background density. 

We remark t h a t  even thougn the  l o c a l l y  isothermal behavior 

of t he  electron d i s t r ibu t ion  does seem t o  be well  borne out by the  

computation, t h e  assumptions made23 on t h e  form of the electron 

d i s t r ibu t ion  function i n  order t o  deduce the  l o c a l l y  isothermal 
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r e l a t i o n  do not themselves seem t o  be pas t i cu la r ly  well borne out. 

An ana ly t ica l  demonstration of the  l o c a l l y  isothermal l a w  has apparent- 

l y  not been given for  t h e  case of a slowly varying external po ten t ia l .  
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6. APPROACH TO INHOMOGE3lEOUS EQUILIBRIA;  
DEVELOF’ME2TC OF A SHIELDING CLOUD 

I n  Section 4 we measured damping of small pert,urhat.ions 

about an inhomogeneous equilibrium and i n  Section 5 we isothermally 

l e d  a uniform plasma t o  an  inhomogeneous equilibrium b y  slowly varying 

t h e  background charge density. In  t h i s  section we consider t h e  ap- 

proach t o  an inhomogeneous equilibriuni when the  background inhomoceneity 

= 2pl COS k X,  t =. 0).  
0 

i s  suddenly switched on ( p  = 0, t < 0; Pext, ext  . 
The electrons rush t o  screen out t h e  external  f i e l d .  They 

i n i t i a l l y  overcompensate fo r  the inhomogeneity and then undergo Landau 

damped osc i l l a t ions  as they approach a new equi1ibrj.m. 

.too l a rge ,  then the  s p a t i a l  charge d is t r ibu t ion  i s  t h e  same as f o r  t h e  

equilibrium calculated i n  Section 4. 

ever, w i l l  not be Maxwellian i n  t h i s  case and f 

marked by l a rge  velocity-space wrinkles. The solut ion of t h e  l i nea r -  

I f  p1 i s  not 

The veloci ty  dependence, how- 

and f 2  will be 1 

i zed  Vlasov equation for  t h i s  case gives t h e  t o t a l  e l e c t r i c  f i e l d  i n  

- = -i D /IC 1 TOT - Eext./D(ko’ where Eext, 1 0  t h e  long-time l i m i t  E 

and D(ko, 0) i s  the  plasma d ie l ec t r i c  fluiction f o r  zero frequency. 

Figure 8 shows an example of 

k = 0.50 and p1 = 0.05. The envelope 

damping r a t e  f i t t e d  t o  t h e  f i r s t  three 

0 

t h e  damping of  El TOT for. 

curves a r e  f o r  a constant 

extrema of t he  El TOT curve. 
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Even f o r  t h i s  small exterlnal f i e l d  the  nonlinear e f f e c t s  a r c h  su f f i -  

aww from t he  l ineaz  c i en t  t o  s h i f t  t he  equilibrium value of E 

p-ed ic t ion .  The x t e r n a l  f i e l d  can be thought of as a wave with zero 

phase veloci ty ,  and, as we see i n  Figure 9, t h e  s p a t i a l l y  uniforni 

part of t h e  p a r t i c l e  d i s t r ibu t ion  i s  most s t rongly a f fec ted  i l l  the  

trapping region surrounding v = 0. 

1 

1 TOT 

I f  P were made much l a r g e r ,  then t h e  nonlinear terms would 

predominate, and a p l o t  such as Figure 8 would show no sign that. 

*1 TOT 
calculated.  

approaches a.n equilibrium i n  t he  time i n t e r v a l s  t h a t  can be 
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FIGURE CAPTIONS 

FIGURE 1. k s o l u t e  value o f  f i r s t  and second Fourier components of 

p a r t i c l e  e l e c t r i c  f i e l d  for an electron plasma driven by 

a s ine  wave. Curve l abe l l ed  P.E. shows the  percent increase 

i n  t h e  t o t a l  electron k ine t i c  energy. Total  e l e c t r i c  f i e l d  

i s  p a r t i c l e  f i e l d  plus the  ex terna l  f i e l d .  

FIGURE 2. Distor t ion of the  s p a t i a l l y  uniform p a r t  of t he  dis t , r ihut ion 

Pmction near the  phase ve loc i ty  wo/ko of t he  dr iving wave 

f o r  t he  s i t ua t ion  of Figure 1. The d i s to r t ion  i s  grea tes t  
-1 at T M 1 7 U p  

trapped p a r t i c l e  motion. 
, approximately one-half of t he  per iod of 

FIGURE 3. Damping of  perturbation on a s p a t i a l l y  non-uniform equi l ib-  

rium t o  i l l u s t r a t e  measurement of t he  dampin@ decrement y. 

Difference i n  slopes of t h e  two s t r a i g h t  l i n e s  ind ica tes  

t he  uncertainty for  t h i s  measurement. 

FIGURE 4. Landau damping decrement as a f inc t ion  of wavenumber f o r  

per turbat ions on spa t i a l ly  non-uniform equ i l ib r i a .  The 

s o l i d  curve i s  t h e  corresponding s p a t i a l l y  uniform ra te .  

Error bars i nd ica t e  uncer ta in t ies  in t he  measurement of the  

damping decrement. 

FIGURE 5. Landau damping decrement as a function of inhomogeneity 

p f o r  k = 0.22. The theo re t i ca l  curve (based on Jackson 

and Raether) assunies t h a t  t he  eigeiif’unc-l,ioii of the  elecLric 

f i e l d  i s  the  Mathieu function se2(lcox. (1). 

1 0 



FIGURE 6. Second order change f (*) i n  t h e  s p a t i a l l y  uniform p a r t  

of t h e  d is t r ibu t ion  f’unction from i t s  i n i t i a l  Maxwellian 

a f t e r  one-quarter ion cycle ( l e f t  panel)  and a f t e r  one-half 

ion cycle ( r igh t  panel). The l e f t  panel a l so  i l l u s t r a t e s  

t h e  e f f ec t  of leaving the  co l l i s ion  term out of t he  

calculation. 

0 

f (2) i s  measured i n  percent of 
0 

f (v = 0, t = 0). 
0 

FIGURE 7. (a) Percent var ia t ion i n  t h e  r a t i o  of e lectron pressure 
t o  mass density as a f’unction of time at  x = 0 f o r  th ree  

cases. Zero var ia t ion represents per fec t  isothermal 

response of electrons t o  t h e  slow var ia t ion  i n  t h e  ion 

background density. 

(b) 

function of x a t  the time of maximum ion inhomogeneity 

fo r  each case. 

Same as (a) except var ia t ion  i s  now shown as a 

F I G U R E  8. Damping of t he  f i r s t  Fourier component of t he  t o t a l  e l e c t r i c  

f i e l d  as electrons approach an inhomogeneous equilibrium 

t o  screen out a fixed ex terna l  charge density 

= 2 p  cos kox). The envelope curves represent 

purely expontential damping f i t t e d  t o  t h e  f i r s t  th ree  

extrema of E 

value from t h e  l inear  prediction. 

( Dext . 1 

Nonlinear e f f ec t s  shift ,  t h e  equilibrium 1 TOT’ 

FIGURE 9. Modification of the s p a t i a l l y  uniform p a r t  of t he  electron 

d is t r ibu t ion  i n  the v i c i n i t y  of v = 0 for  t h e  s i t ua t ion  of 

Figure 8. 
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Response of a One-Dimensional Vlasov Plasma t o  External E lec t r i c  11 

Fields ,"  by Rollin C. Harding (U. of  Iowa 68-15) 

Page 21, 4th l i n e  from the bottom: 

Replace wo = 0.75 by wo = 0.075 

Page 22, only equation on page: 


